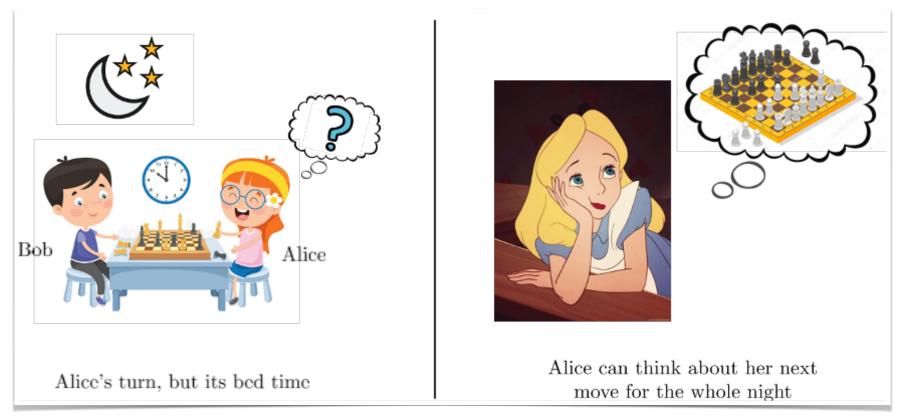
Information-theoretically Secure Bit Commitment over Noisy Channels

Anuj K. Yadav LINX EPFL

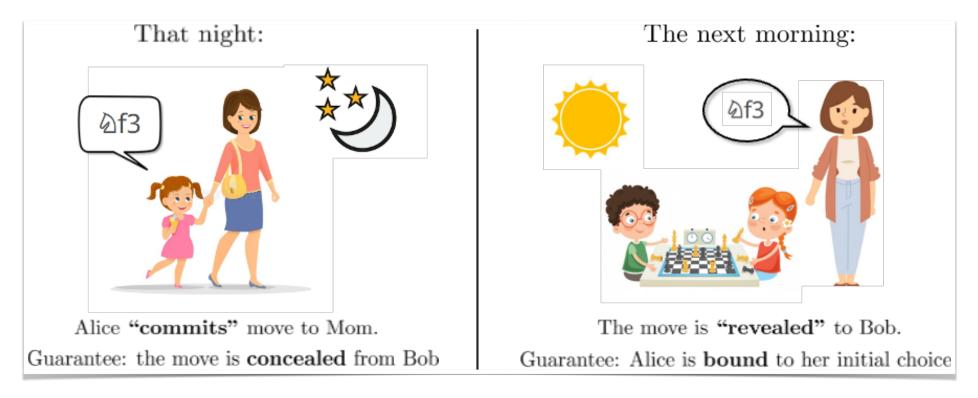
The Game of Chess

A problem!



The Game of Chess

Potential Solution!





Answer:

Commitment Protocol!

What is Commitment?

- Security Protocol
- **Two users:** sender/committer (<u>Alice</u>) and a receiver/verifier (<u>Bob</u>)
- **Two Phases:** *"Commit Phase"* followed by a *"Reveal phase"*
- Security Guarantees: Soundness Concealment Bindingness
- Applications: Secure Multiparty Computation Zero-Knowledge Proofs Coin Tossing

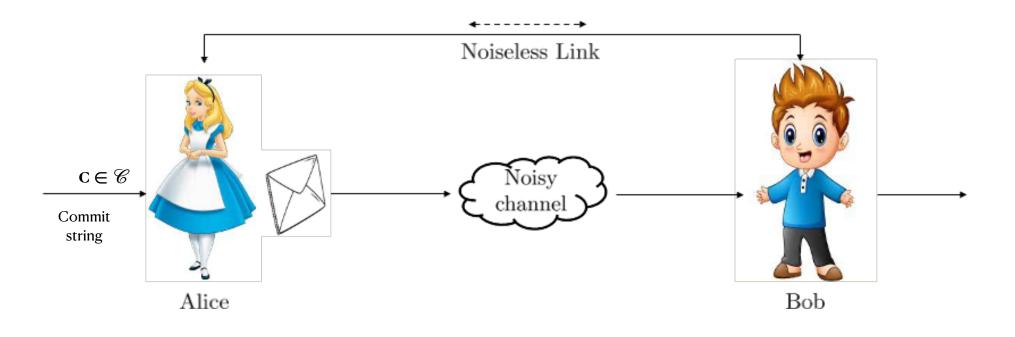
Computational Security (CS) VS Information-theoretic Security (ITS)

- [Blum '83] Introduced Commitment
- [Brassard et. al]— (comp. binding and IT concealing)
- [Ostrovksy et. al] (comp. concealing and IT binding) And many others....

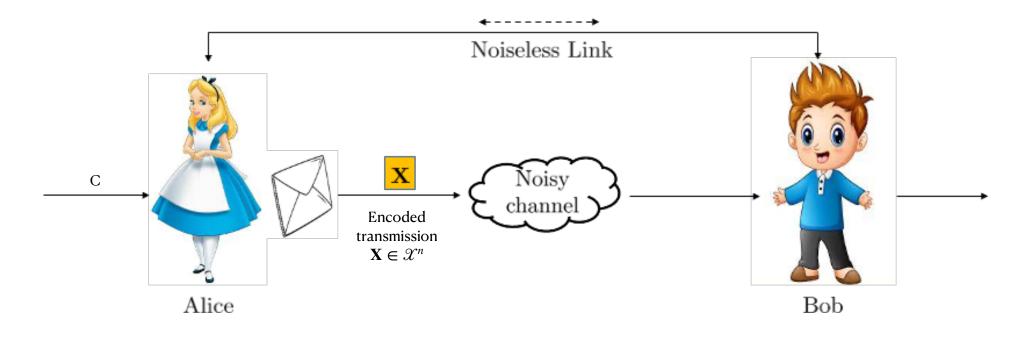
What if both the users are "computationally unbounded" ?

• Noisy Communication Channel comes as a relief ! – [Creapau & Kilian '88]

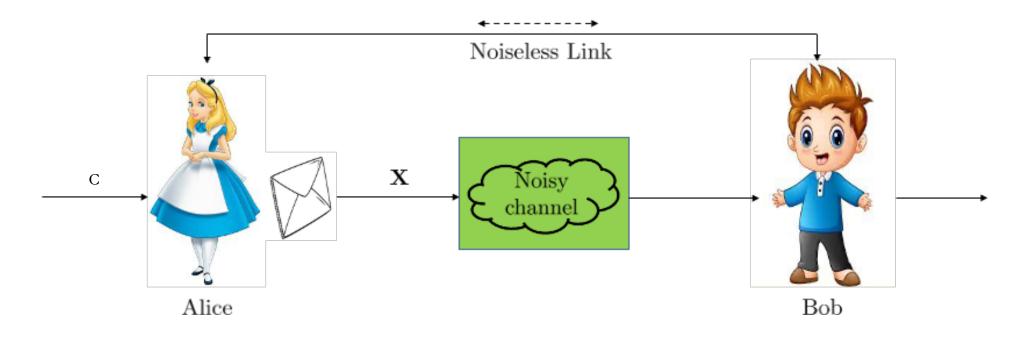
Model

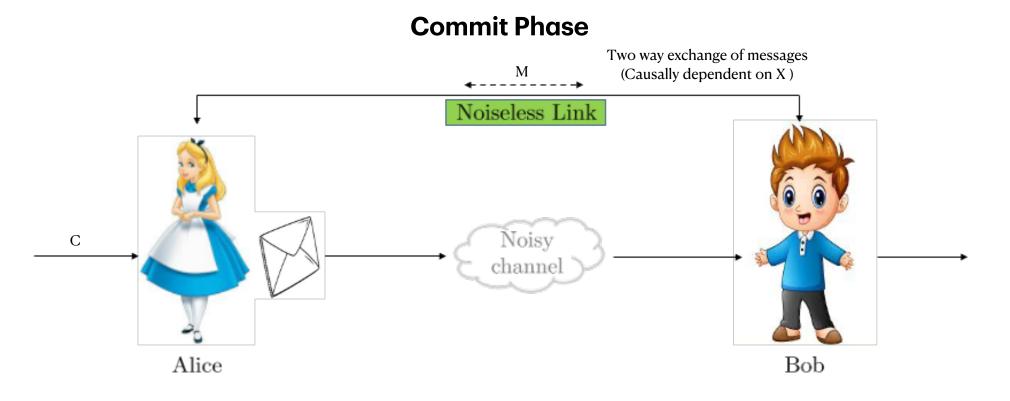


Commit Phase

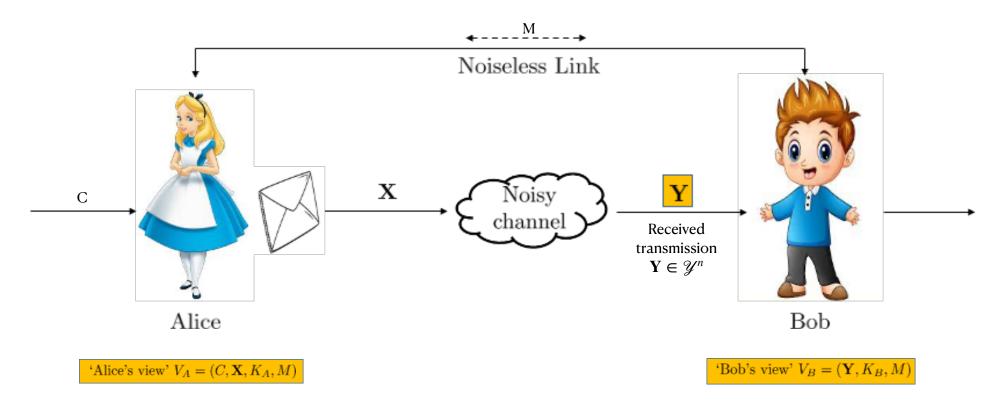


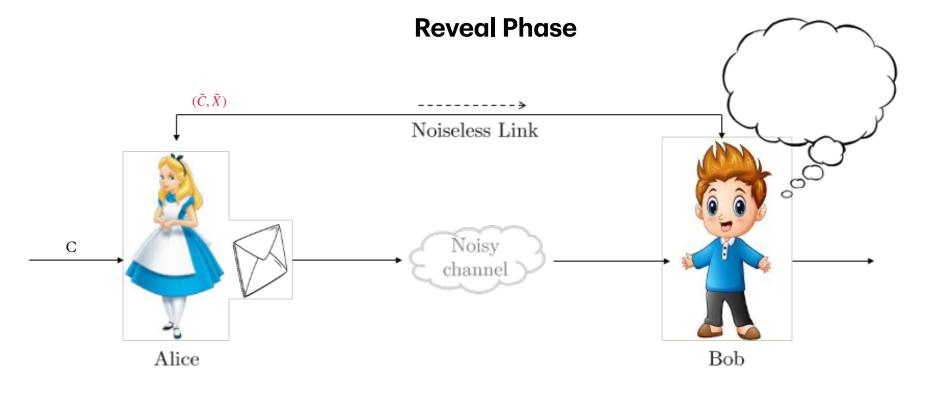
Commit Phase

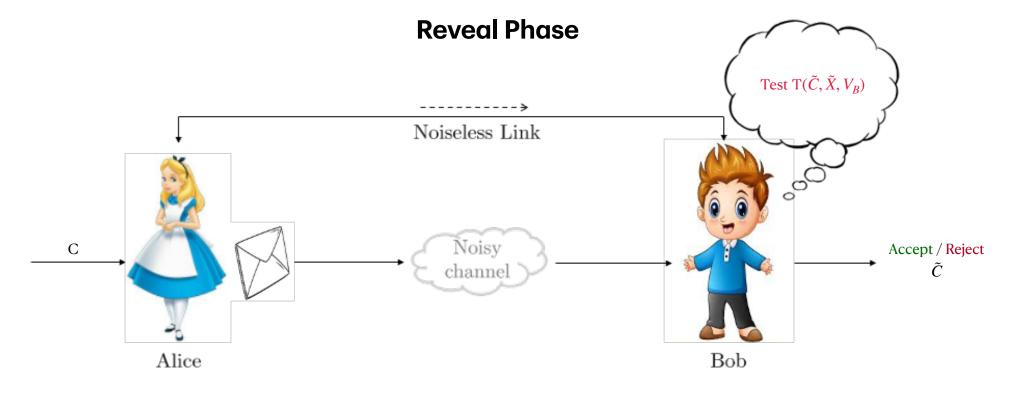


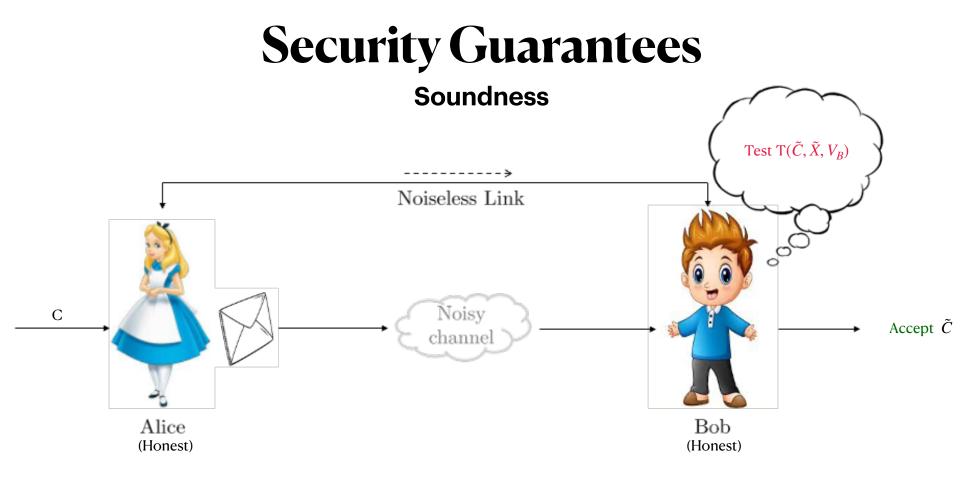


Commit Phase









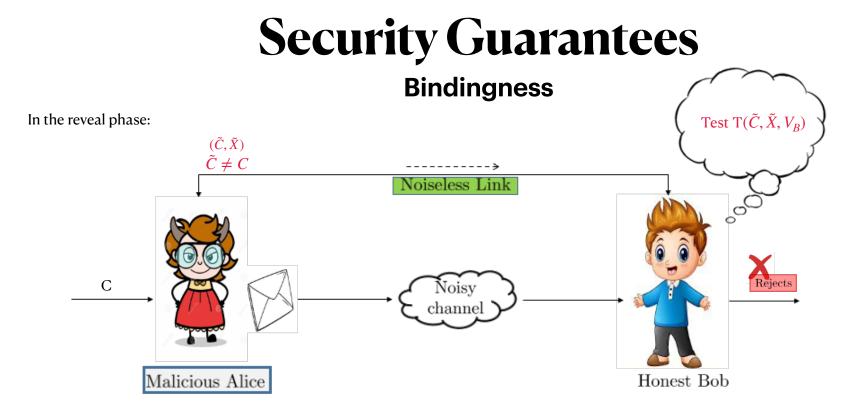
 $\mathbb{P}(T(C, X, V_B) = \text{REJECT}) \le \epsilon(n)$

Security Guarantees

Concealment

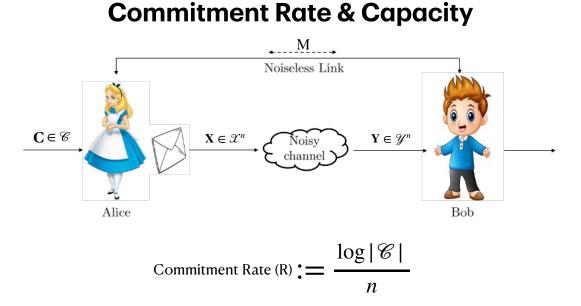
Malicious Bob can not learn Alice's Bid!

 $I(C; V_B) \le \epsilon(n)$



Bob's Test rejects dishonest Alice's cheating string

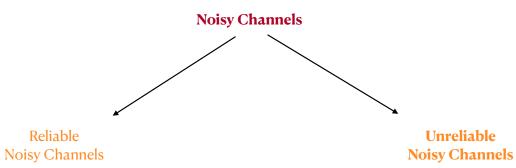
$$\mathbb{P}\left(T(\hat{C}, \hat{X}, V_B) = \text{"Accept" & } T(\tilde{C}, \tilde{X}, V_B) = \text{"Accept"}\right) \le \epsilon(n)$$
$$\forall (\hat{C}, \hat{X}), \ (\tilde{C}, \tilde{X}) : \hat{C} \ne \tilde{C}$$



Rate R > 0 is <u>"achievable"</u> if $\forall \epsilon > 0, \forall n$ sufficiently large. $\exists an (n; R)$ -commitment protocol $\mathcal{P} : \mathcal{P}$ is ϵ -sound, ϵ - binding and ϵ -concealing.

 $\mathbb{C} := \sup\{R : R \text{ is achievable } \}$

Commitment Capacity



- Perfectly characterised by a fixed transition function
- Examples: $DMC(W_{Y|X})$, BSC(p), BEC(p), AWGN $(0,\sigma^2)$, etc..

- Poorly characterised Channels
- Users are unaware of the precise channel behaviour.
- Examples: Compound DMC ($\{W_{Y|X}\}_{s \in \delta}$), AVC($W_{Y|X,S}$), <u>UNC[γ, δ]</u>, <u>Elastic Channel (EC)-</u>[γ, δ], <u>Reverse Elastic Channels (REC)-[γ, δ].</u>

Known Results on Capacity over Channels

Discrete Memoryless Channels (DMC) $\{W_{Y|X}\}$

 $C_{DMC} = \max_{P_X} H(X | Y)$ $C_{BSC} = H(p)$ [Winter et. al 'o4 (IMA ICCC)]

<u>Cost-Constrained DMC</u> { ρ_X , Γ , $W_{Y|X}$ }:

$$C(\Gamma) = \max_{\substack{P_X: \mathbb{E}[\rho_X(X) \le \Gamma] \\ \gamma \ge 0 \quad Q_Y}} H(X \mid Y)$$
$$C(\Gamma) = \min_{\gamma \ge 0} \max_{Q_Y} \log \left[\sum_{x \in \mathcal{X}} 2^{-D(W_{Y|X}(\cdot \mid x) \mid \mid Q_Y(\cdot)) + \gamma(\Gamma - \rho_X(x))} \right]$$

[MYBM '21 (ISIT)]

Compound- Discrete Memoryless Channels (C-DMC) $\{W_{Y|X}\}_{s \in S}$

$$C_{C-DMC} = \max_{P_X} \min_{s \in S} H(X | Y)$$

$$C_{BSC[p,q]} = H(p)$$
[YMBM'21 (NCC)]

State-aware compound channels (honest-but-curious users):

Receiver is state-aware:

$$C_{C-DMC} = \max_{P_X} \min_{s \in \mathcal{S}} H(X \mid Y)$$

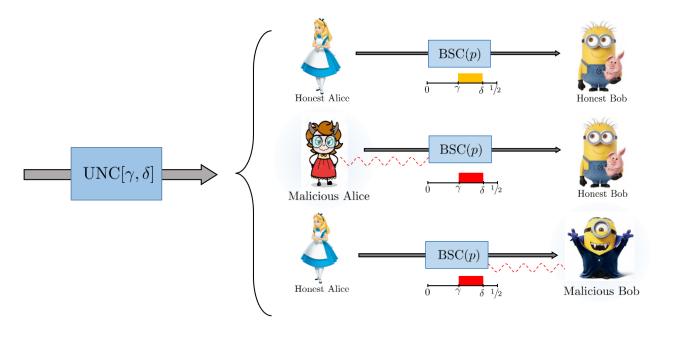
Sender is state-aware:

 $C_{C-DMC} = \min_{P_X} \max_{s \in \mathcal{S}} H(X \mid Y)$

[YMBM'22 (COMSNETS)]

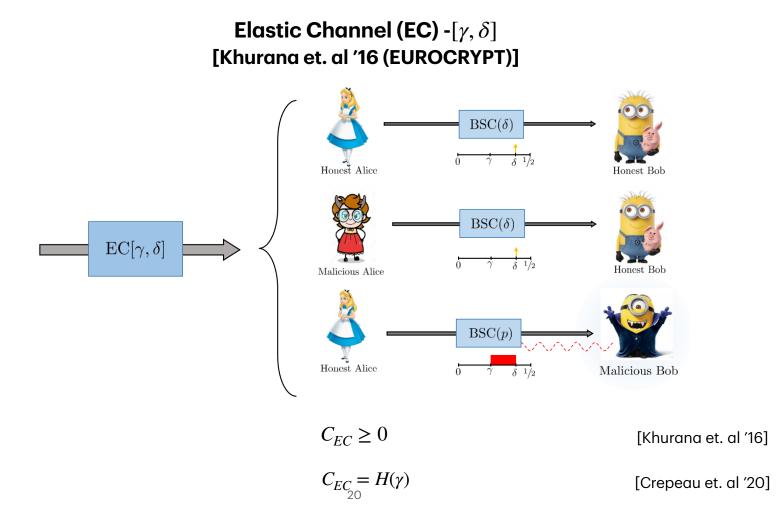
Unreliable Noisy Channels

Unfair Noisy Channel (UNC)- $[\gamma, \delta]$ [Damgard et. al '99 (EUROCRYPT)]



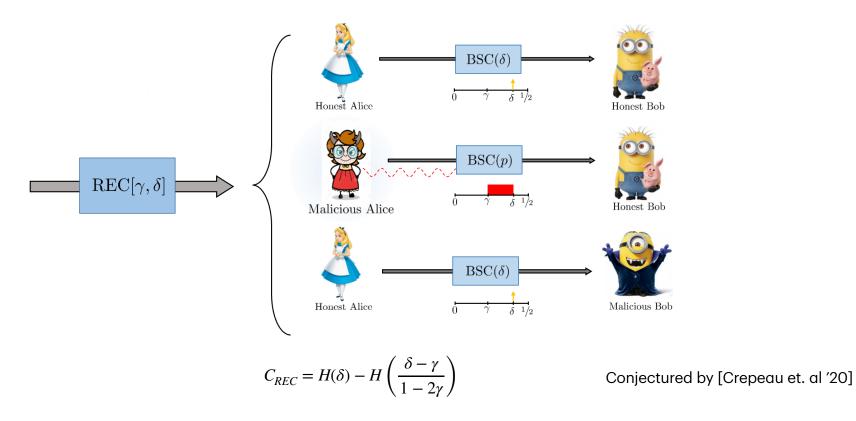
If $\delta \ge \gamma * \gamma = 2\gamma(1 - \gamma)$. Then, $C_{UNC} = 0$.	[Damgard et. al '99]
If $\delta < 2\gamma(1-\gamma)$. Then, $C_{UNC} = H(\gamma) - H\left(\frac{\delta-\gamma}{1-2\gamma}\right)$	[Crepeau et. al '20 (Trans. IT)]

Unreliable Noisy Channels



Unreliable Noisy Channels

Reverse Elastic Channel (EC) - $[\gamma, \delta]$

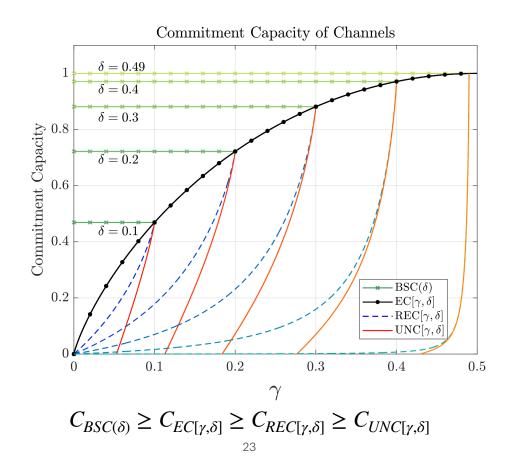


Commitment Capacity of REC-[γ , δ] Key results from [BJMY '22 (JSAC)]

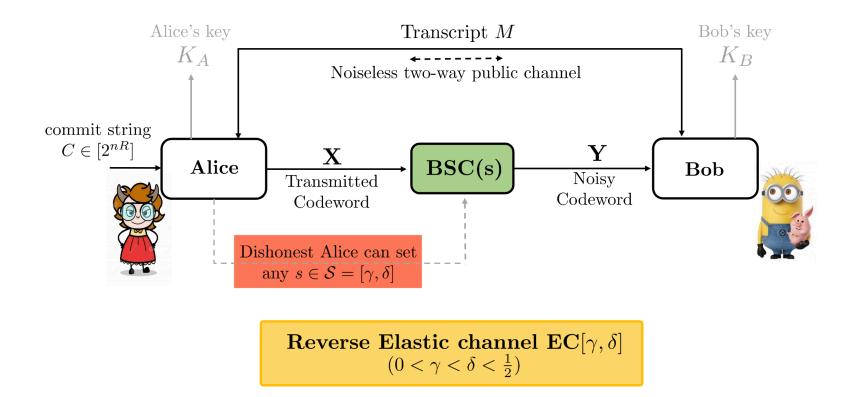
- $C_{REC} \ge 0$. $\forall 0 < \gamma < \delta < 1/2$
- $C_{REC} = H(\delta) H\left(\frac{\delta \gamma}{1 2\gamma}\right)$
- $C_{REC} \leq C_{EC}$ i.e., Asymmetry in Commitment Capacity in channels with one-sided elasticity.
- For honest-but-curious users, we have $C_{REC} = C_{EC}$

Comparison of Commitment Capacities

Key results



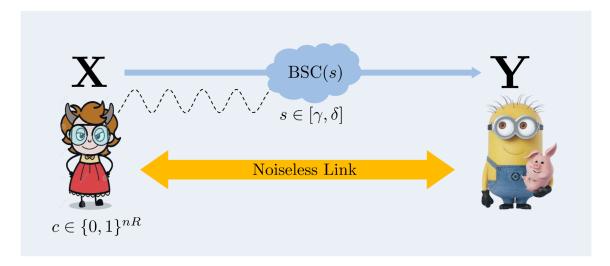
Revisiting Problem Setup



Converse

Alice's Cheating Strategy

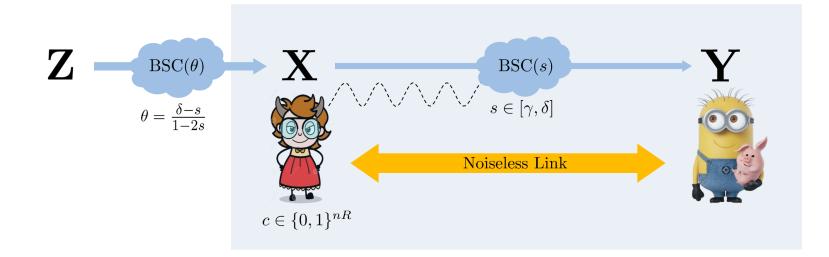
Alice sets the channel to be a $BSC(s), s \in [\gamma, \delta]$ This allows her some room to cheat



Converse

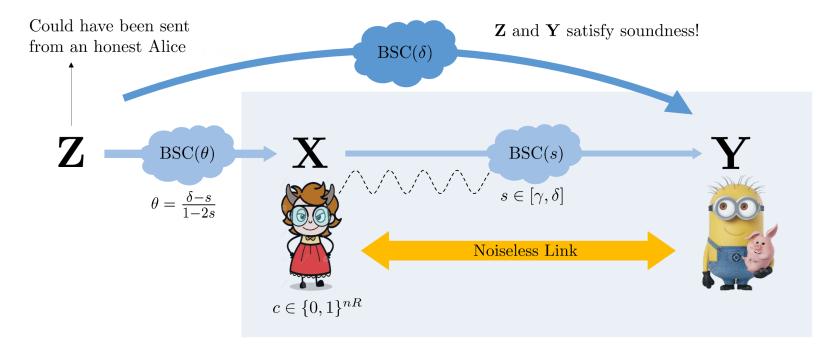
Alice's Cheating Strategy

Alice sets the channel to be a BSC(s), $s \in [\gamma, \delta]$ This allows her some room to cheat



Converse

Alice's Cheating Strategy

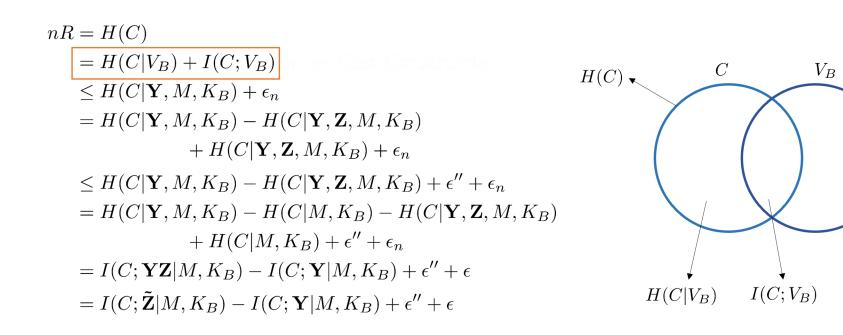


Commitment over REC-[γ , δ] Converse

A rate R scheme:
$$\epsilon_n - sound$$
, $\epsilon_n - concealing$ and $\epsilon_n - binding$ $\left(\epsilon_n \xrightarrow{n \to \infty} 0\right)$

nR = H(C)Because $C \in \{0, 1\}^{nR}$

Now, we analyse this expression assuming Alice executes the cheating strategy described previously

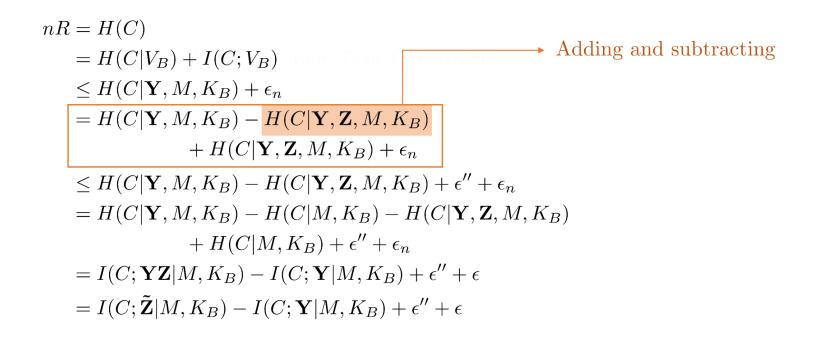


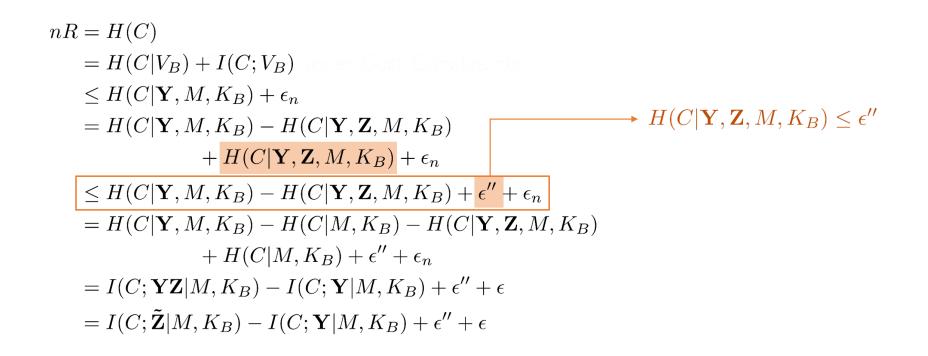
Converse

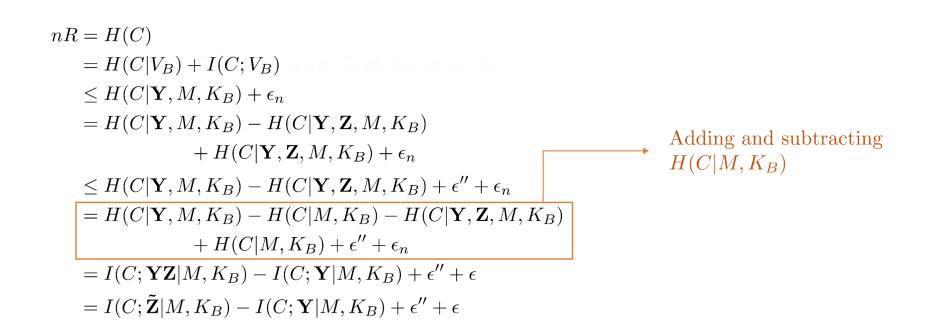
nR = H(C)

 $= H(C|V_B) + I(C;V_B)$ $\leq H(C|\mathbf{Y}, M, K_B) + \epsilon_n$ $= H(C|\mathbf{Y}, M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B)$ $+ H(C|\mathbf{Y}, \mathbf{Z}, M, K_B) + \epsilon_n$ $\leq H(C|\mathbf{Y}, M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B) + \epsilon'' + \epsilon_n$ $= H(C|\mathbf{Y}, M, K_B) - H(C|M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B)$ $+ H(C|M, K_B) + \epsilon'' + \epsilon_n$ $= I(C; \mathbf{YZ}|M, K_B) - I(C; \mathbf{Y}|M, K_B) + \epsilon'' + \epsilon$

 $I(C; V_B) \leq \epsilon_n$ by concealment







Converse

nR = H(C) $= H(C|V_B) + I(C;V_B)$ $\leq H(C|\mathbf{Y}, M, K_B) + \epsilon_n$ $= H(C|\mathbf{Y}, M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B)$ $+ H(C|\mathbf{Y}, \mathbf{Z}, M, K_B) + \epsilon_n$ $\leq H(C|\mathbf{Y}, M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B) + \epsilon'' + \epsilon_n$ $= H(C|\mathbf{Y}, M, K_B) - H(C|M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B)$ $+ H(C|M, K_B) + \epsilon'' + \epsilon_n$ $= I(C; \mathbf{\tilde{Z}}|M, K_B) - I(C; \mathbf{Y}|M, K_B) + \epsilon'' + \epsilon$

Grouping 3^{rd} with 4^{th} term and 1^{st} with 2^{nd} term

Converse

nR = H(C) $= H(C|V_B) + I(C;V_B)$ $\leq H(C|\mathbf{Y}, M, K_B) + \epsilon_n$ $= H(C|\mathbf{Y}, M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B)$ $+ H(C|\mathbf{Y}, \mathbf{Z}, M, K_B) + \epsilon_n$ $\leq H(C|\mathbf{Y}, M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B) + \epsilon'' + \epsilon_n$ $= H(C|\mathbf{Y}, M, K_B) - H(C|M, K_B) - H(C|\mathbf{Y}, \mathbf{Z}, M, K_B)$ $+ H(C|M, K_B) + \epsilon'' + \epsilon_n$ $= I(C; \mathbf{YZ}|M, K_B) - I(C; \mathbf{Y}|M, K_B) + \epsilon'' + \epsilon$ $= I(C; \mathbf{\tilde{Z}}|M, K_B) - I(C; \mathbf{Y}|M, K_B) + \epsilon'' + \epsilon$

Denoting the pair of random variables (\mathbf{Y}, \mathbf{Z}) as $\tilde{\mathbf{Z}}$

Converse

$$nR = H(C)$$

= $I(C; \tilde{\mathbf{Z}}|M, K_B) - I(C; \mathbf{Y}|M, K_B) + \epsilon'' + \epsilon$
 $\implies R \le I(\mathbf{X}; \tilde{\mathbf{Z}}) - I(\mathbf{X}; \mathbf{Y}) + \frac{\epsilon''}{n} + \frac{\epsilon}{n}$

Using the result from seminal work [Csizar and Korner '78] Followed by few non-trivial information-theoretic reductions

Converse

$$nR = H(C)$$

$$= I(C; \tilde{\mathbf{Z}} | M, K_B) - I(C; \mathbf{Y} | M, K_B) + \epsilon'' + \epsilon$$

$$\implies R \le I(\mathbf{X}; \tilde{\mathbf{Z}}) - I(\mathbf{X}; \mathbf{Y}) + \frac{\epsilon''}{n} + \frac{\epsilon}{n}$$

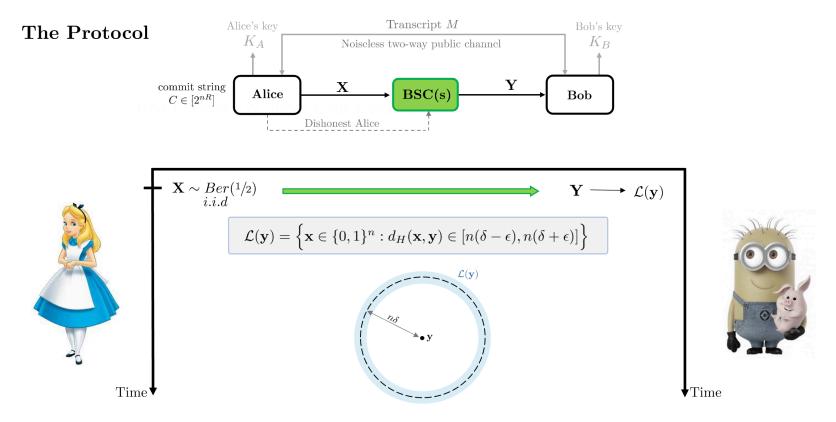
$$\implies R \le \min_{s \in [\gamma, \delta]} \left[I(\mathbf{X}; \tilde{\mathbf{Z}}) - I(\mathbf{X}; \mathbf{Y}) \right]$$

$$\le \max_{P_X} \min_{s \in [\gamma, \delta]} \left[I(\mathbf{X}; \tilde{\mathbf{Z}}) - I(\mathbf{X}; \mathbf{Y}) \right]$$

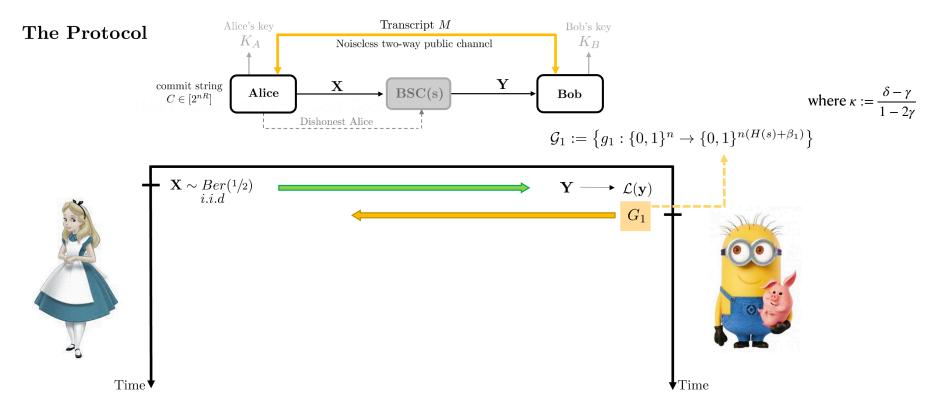
$$\le H(\delta) - H(\theta)$$
Because

Because the inequality holds for *all* cheating behaviours of Alice, it must also hold for the minimum

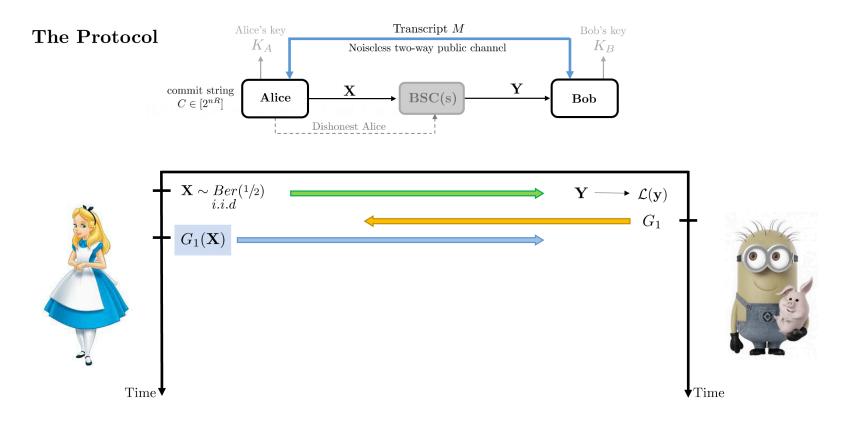
Achievability: Protocol: Commit phase



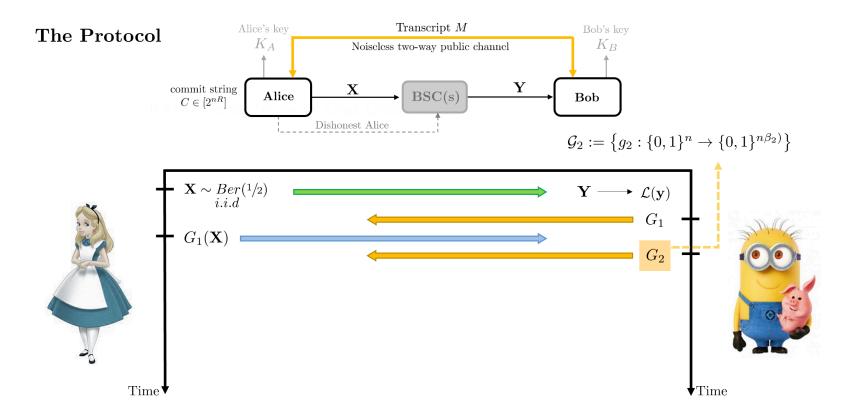
Achievability: Protocol: Commit phase



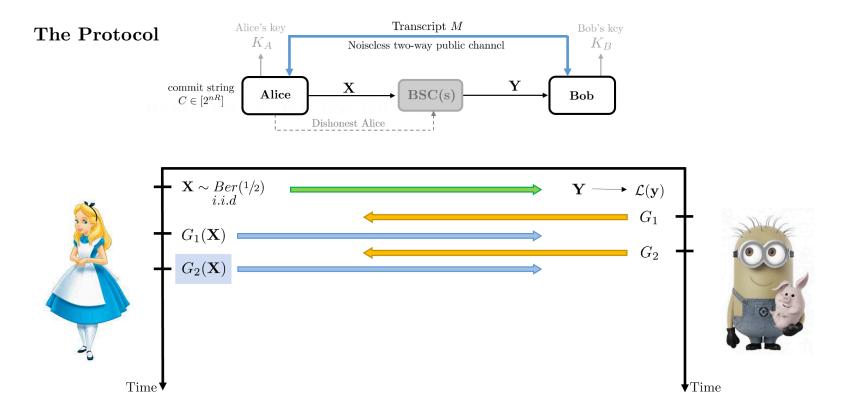
Achievability: Protocol: Commit phase



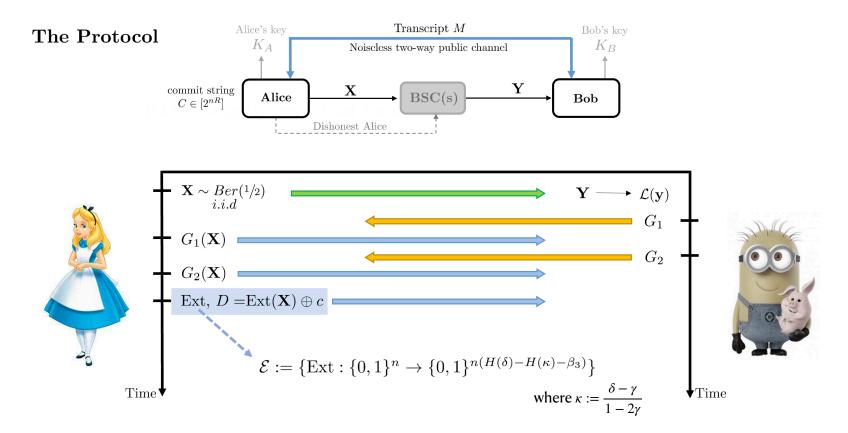
Achievability: Protocol: Commit phase



Achievability: Protocol: Commit phase



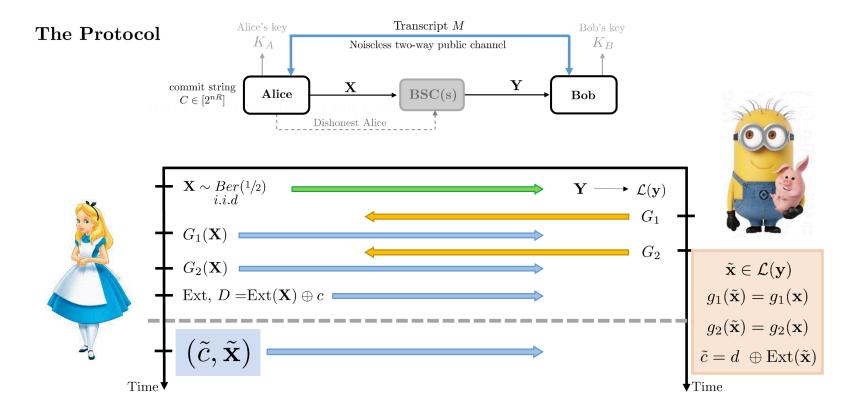
Achievability: Protocol: Commit phase



Achievability: Protocol: Reveal phase

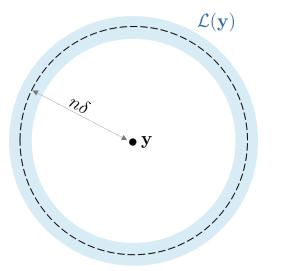


Achievability: Protocol: Reveal phase



Security Guarantees: e-soundness

Bob prepares a list $\mathcal{L}(\mathbf{y}) = \left\{ \mathbf{x} \in \{0, 1\}^n : d_H(\mathbf{x}, \mathbf{y}) \in [n(\delta - \epsilon), n(\delta + \epsilon)] \right\}$



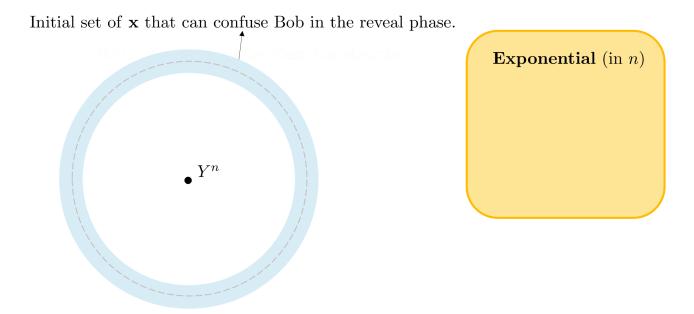
Protocol is sound if $\mathbf{X} \in \mathcal{L}(\mathbf{y})$ with high probability

Using the Chernoff Bound, and the fact that \mathbf{X} and \mathbf{Y} are connected via a BSC(δ), we can show:

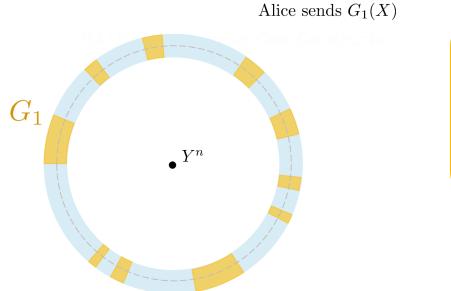
$$P(\mathbf{X} \notin \mathcal{L}(\mathbf{y})) \leq \epsilon'(n)$$

 $\epsilon'(n) \to 0 \text{ as } n \to \infty$

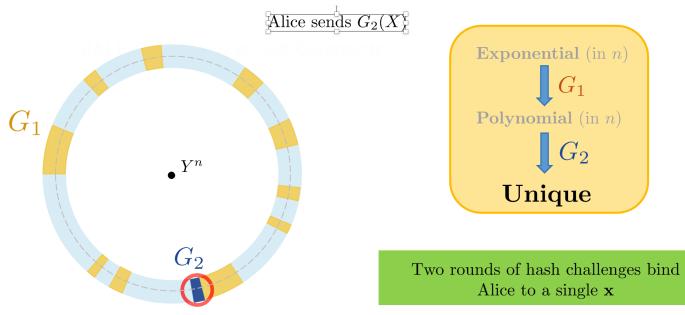
Commitment over REC-[γ , δ] Security Guarantees: ϵ -bindingness



Commitment over REC-[γ , δ] Security Guarantees: ϵ -bindingness



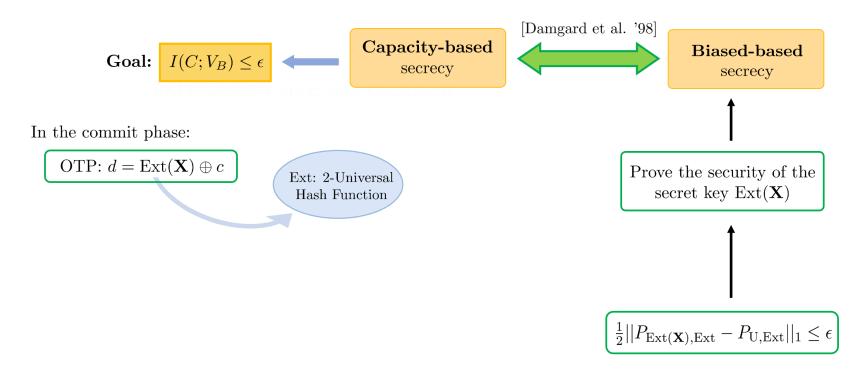
Security Guarantees: e-bindingness



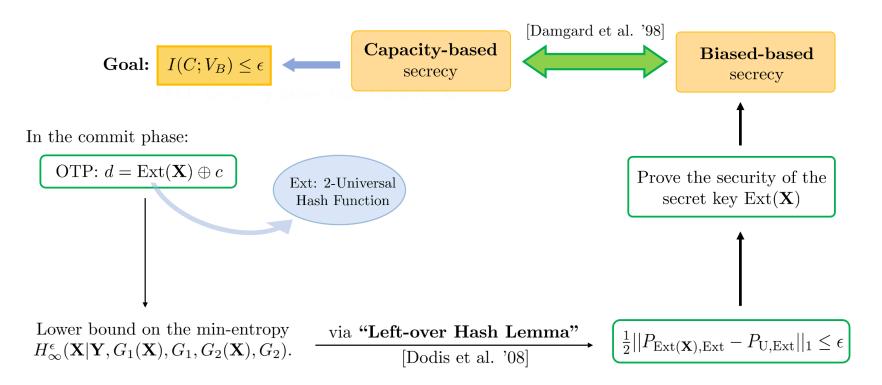
The *one* remaining \mathbf{x} Alice can use.

Security Guarantees: e-concealment

Security Guarantees: e-concealment



Security Guarantees: e-concealment



Commitment over Noisy Channels Other Interesting Results:

- Commitment Capacity of AWGN channels is "Infinite". [Nascimento et.al (Trans. IT '08)]
- UNC version of Gaussian Channels may have finite capacity. It has zero commitment capacity if $\delta^2 \ge 2\gamma^2$, even under infinite input power. and other results.. [BJMY (ISIT '23)]
- Bit commitment over Multiple-access channels. [Chou and Bloch (Allerton '22)]