

Leveraging Spherical Codes for Commitment over Gaussian **UNCs**

Amitalok Budkuley IIT Kharagpur

Anuj K. Yadav **EPFL**

Joint work with:

Manideep Mamindlapally **QuSoft & University of Amsterdam**

Research institute for mathematics & computer science in the Netherlands

Introduction

- Cryptographic Primitive
- Two Users **Committer** (*Alice*) and **Verifier** (*Bob*)

Introduction

- Cryptographic Primitive
- Two Users **Committer** (*Alice*) and **Verifier** (*Bob*)
- Two Phases **Commit Phase** followed by **Reveal Phase**

Introduction

- Cryptographic Primitive
- Two Users **Committer** (*Alice*) and **Verifier** (*Bob*)
- Two Phases **Commit Phase** followed by **Reveal Phase**
- Security Guarantees: **Soundness**

Concealment

Bindingness

Computationally secure

(Secure under the assumption that 'atleast' one user is computationally bounded)

History

• [Blum '83] : Commitment - Interactive exchange of messages (Computationally secure)

- Unconditionally secure Commitment **IMPOSSIBLE**

Unless a **non-trivial** resource is used - noisy channel, shared randomness, etc.

History

• [Blum '83] : Commitment - Interactive exchange of messages (Computationally secure)

- Unconditionally secure Commitment via NOISY CHANNELS

- [Crèpeau et al. '20] : Characterized Commitment Capacity of UNCs
- And others...

History

• [Blum '83] : Commitment - Interactive exchange of messages (Computationally secure)

• [Crèpeau et al. '88] : Unconditionally secure Commitment based on Noisy channel (BSC) [Damgård et al. '99] : Impossibility results on Commitment over Unfair Noisy Channel (UNC) • [Winter et al. '04] : Characterized Commitment Capacity of Discrete Memoryless Channels

Commit Phase

Two-way Noiseless Link

Noisy Channel

Receiver (Bob)

Unconditionally Secure Commitment General Problem Setup Commit Phase Two-way Noiseless Link C Noisy Channel Commit String K_A K_B

 \mathbf{Y}, K_{B}

 $V_A = (C, \mathbf{X}, M, K_A)$

Commit Phase

 $V_B = (\mathbf{Y}, M, K_B)$

 $V_A = (C, \mathbf{X}, M, K_A)$

 $V_{R} = (\mathbf{Y}, M, K_{B})$

 $V_A = (C, \mathbf{X}, M, K_A)$

$$\mathbf{\Gamma EST} (V_B, \tilde{C}, \tilde{\mathbf{X}}) -$$

Commitment Rate := -

No. of uses of noisy channel

Unconditionally Secure Commitment Security Guarantees <u>Soundness</u> (In reveal phase) Two-way Noiseless Link (Honest) (Honest) Noisy Channel

 $V_A = (C, \mathbf{X}, M, K_A)$

 $\mathbf{P} (\text{TEST} (V_B, \tilde{C}, \tilde{\mathbf{X}}) = \text{reject}) \leq \epsilon$

TEST $(V_B, \tilde{C}, \tilde{\mathbf{X}}) \xrightarrow{\tilde{C}}$ Accept

 $V_A = (C, \mathbf{X}, M, K_A)$

Mutual Information : $I(C; V_B) \leq \epsilon$

Unconditionally Secure Commitment

Security Guarantees

Concealment

(In commit phase)

Two-way Noiseless Link

Noisy Channel

 $V_B = (\mathbf{Y}, M, K_B)$

Unconditionally Secure Commitment Security Guarantees

$$\begin{split} \mathbf{P} \left\{ (\text{TEST} \left(V_B, \tilde{C}, \tilde{\mathbf{X}} \right) = \text{accept} \right) \& \left(\text{TEST} \left(V_B, \hat{C}, \hat{\mathbf{X}} \right) = \text{accept}) \right\} &\leq \epsilon \\ \forall (\tilde{C}, \tilde{X}), (\hat{C}, \hat{X}) \text{ s.t. } \tilde{C} \neq \hat{C} \end{split}$$

Bindingness

(In reveal phase)

Two-way Noiseless Link

Noisy Channel (Honest)

TEST
$$(V_B, \tilde{C}, \tilde{\mathbf{X}})$$

Reject

Unconditionally Secure Commitment Our Goal : Commitment Capacity

• Recall, Commitment Rate $(\mathbb{R}) := \frac{\text{length of commit string}}{\text{No. of uses of noisy channel}}$

- Commitment Capacity $(\mathbb{C}) := \sup \{ \mathbb{R} : \mathbb{R} \text{ is achievable} \}$
- A rate **R** is achievable if

 \exists a commitment scheme with rate \mathbb{R} that satisfies all the three security guarantees

Goal : To study the 'possibility of commitment' and the 'commitment capacity' of Gaussian UNCs.

Commitment over AWGN Channel (with power constraint *P***)**

N-dimensional Euclidean ball

Unconditionally Secure Commitment Commitment over AWGN Channel

Theorem:

The Commitment Capacity of an AWGN channel (even with finite power constraint) is **Infinite**.

A. C. A. Nascimento, J. Barros, S. Skludarek and H. Imai, "The Commitment Capacity of the Gaussian Channel Is Infinite," in IEEE Transactions on Information Theory, vol. 54, no. 6, pp. 2785-2789, June 2008, doi: 10.1109/TIT.2008.921686.

N-dimensional Euclidean ball

Gaussian Unfair Noisy Channel (Gaussian - UNC)

Gaussian Unfair Noisy Channel (Gaussian - UNC)

Gaussian Unfair Noisy Channel (Gaussian - UNC)

Commitment over Gaussian UNC

Theorem:

For Gaussian-UNC $[\gamma^2, \delta^2]$, with unconstrained input $P \to \infty$, the commitment capacity is zero (i.e., $\mathbb{C} = 0$), if $\delta^2 \ge 2\gamma^2$

Budkuley, A., Joshi, P., Mamindlapally, M. and Yadav, A.K., 2023, June. On the (im) possibility of commitment over gaussian unfair noisy channels. In 2023 IEEE International Symposium on Information Theory (ISIT) (pp. 483-488).

Main Result - Impossibility Result

Commitment over Gaussian UNC

Theorem:

For Gaussian-UNC [γ^2 , δ^2], with P > 0, the positive rate commitment is possible if $\delta^2 < (1)$ and the commitment capacity is lower bounded by: $\mathbb{C} \ge \mathbb{C}_L := \frac{1}{2} \log\left(\frac{1}{2} \log\left(\frac{1}{2}\right)\right)$

Main Result - Achievability (Lower Bound)

$$+\frac{P}{P+\gamma^2}\Big)\gamma^2$$

$$\left(\frac{P}{E}\right) - \frac{1}{2}\log\left(1 + \frac{P}{\gamma^2}\right)$$

Commitment over Gaussian UNC

Main Result - Converse (Upper Bound)

Theorem:

For Gaussian-UNC $[\gamma^2, \delta^2]$, with upper bounded by $\mathbb{C} \leq \mathbb{C}_U := \frac{1}{2} \log \left(1\right)$ if $\delta^2 < 2\gamma^2$.

For Gaussian-UNC [γ^2 , δ^2], with P > 0, the commitment capacity is

$$+\frac{P}{E}
ight)-\frac{1}{2}\log\left(1+\frac{P}{\gamma^2}
ight)$$

Commitment over Gaussian UNC Achievability Scheme - Spherical code

- For $0 < \alpha < 1$, \exists a code $\mathscr{C} \subseteq \mathbb{R}^n$ s.t. : • $d_{min}(\mathscr{C}) = \alpha^2 nP$ • $\bar{R} \ge \frac{1}{2} \log \left(\frac{1}{1 - (1 - \alpha/2)^2} \right)$
- Uniformly dist. codewords on the surface of a hypersphere
- Spherical code $(\mathscr{C}, \psi, \phi)$ with 'equi-normed' codewords
- $\mathscr{C} \subseteq \mathbb{R}^n, \psi : \{0,1\}^m \to \mathbb{R}^n, \phi : \mathbb{R}^n \to \{0,1\}^m \cup \{0\}$
- $(\mathscr{C}, \psi, \phi)$ shared between both Alice and Bob

- Alice wants to commit to a string, say *C*
- Picks $U^m \in \{0,1\}^m \sim \text{ber}(1/2) \text{ i.i.d}$
- Transmits $\mathbf{X} = \psi(u^m)$ to Bob, he receives \mathbf{Y} . Bob creates a list $\mathscr{L}(y)$ of codewords :

$$\mathscr{L}(\mathbf{y}) := \{ \mathbf{x} \in \mathscr{C} : n(\gamma^2 - \alpha_1) \}$$

Gaussian-UNC $[\gamma^2, \delta^2]$

$\|\mathbf{x} - \mathbf{y}\|_{2}^{2} \le n(\delta^{2} + \alpha_{1})\}$

- Alice wants to commit to a string, say C.
- Picks $U^m \in \{0,1\}^m \sim \text{ber}(1/2) \text{ i.i.d}$
- Transmits $\mathbf{X} = \psi(u^m)$ to Bob, he receives \mathbf{Y} .
- Two rounds of Hash challenge from Bob to Alice.

Gaussian-UNC $[\gamma^2, \delta^2]$

Two-way Noiseless Link

- Alice wants to commit to a string, say *C*.
- Picks $U^m \in \{0,1\}^m \sim \text{ber}(1/2) \text{ i.i.d}$
- Transmits $\mathbf{X} = \psi(u^m)$ to Bob, he receives \mathbf{Y} .
- Two rounds of Hash challenge from Bob to Alice.
- Randomness Extractor (one-time pad with *C*) from Alice to Bob.

Y. bb to Alice.

Gaussian-UNC $[\gamma^2, \delta^2]$

Two-way Noiseless Link

Two-way Noiseless Link

- Alice wants to commit to a string, say *C*.
- Picks $U^m \in \{0,1\}^m \sim \text{ber}(1/2) \text{ i.i.d}$
- Transmits $\mathbf{X} = \psi(u^m)$ to Bob, he receives \mathbf{Y} .
- Two rounds of Hash challenge from Bob to Alice.
- Randomness Extractor (one-time pad with *C*) from Alice to Bob.
- $V_A = (c, u^m, \mathbf{x}, G_1, G_2, Ext)$
- $V_B = (\mathbf{y}, G_1, G_1(u^m), G_2, G_2(u^m), \text{Ext}, Q)$

Y. bb to Alice

Gaussian-UNC $[\gamma^2, \delta^2]$

Two-way Noiseless Link

Two-way Noiseless Link

- Alice reveals (\tilde{c}, \tilde{u}^m) to Bob.
- Bob performs tests to accept / reject \tilde{c} .

----- Typicality Test

Check : $\psi(\tilde{u}^m) \in \mathscr{L}(\mathbf{y})$?

Hash Challenge Test

OTP Test

Two-way Noiseless Link

Check : $G_1(\tilde{u}^m) = G_1(u^m)$ and $G_2(\tilde{u}^m) = G_2(u^m)$?

Check : $\tilde{c} \oplus \text{Ext}(\tilde{u}^m) = Q$?

Commitment over Gaussian UNC Achievability Scheme - Security Guarantees

- Alice wants to commit to a string, say *C*.
- Picks $U^m \in \{0,1\}^m \sim \text{ber}(1/2) \text{ i.i.d}$
- Transmits $\mathbf{X} = \psi(u^m)$ to Bob, he receives \mathbf{Y} .
- Two rounds of Hash challenge from Bob to Alice.
- Randomness Extractor (one-time pad with C) from Alice to Bob.

Commitment over Gaussian UNC Achievability Scheme - Security Guarantees

- Alice wants to commit to a string, say C.
- Picks $U^m \in \{0,1\}^m \sim \text{ber}(1/2) \text{ i.i.d}$
- Transmits $\mathbf{X} = \psi(u^m)$ to Bob, he receives \mathbf{Y} .
- Two rounds of Hash challenge from Bob to Alice.
- Randomness Extractor (one-time pad with C) from Alice to Bob.

Commitment over Gaussian UNC Summary of Results Unconstrained Input $(P \rightarrow \infty)$ $\delta^2 \ge 2\gamma^2$ **Impossibility Result:** Achievability: Commitment Capacity, $\mathbb{C} = 0$ Thus, $\mathbb{C} = \mathbb{C}_L = \mathbb{C}_U = \frac{1}{2} \log\left(\frac{\gamma^2}{E}\right)$ $2\gamma^2$ 0

Commitment over Gaussian UNC Summary of Results

- Reduces to AWGN channel
- Our achievability result: $\mathbb{C} \ge \lim_{E \to 0} \left\{ \frac{1}{2} \log \left\{ \frac{1}{2}$

Gaussian UNC with Zero Elasticity $(E := \delta^2 - \gamma^2 = 0)$

$$\operatorname{og}\left(\frac{P}{E}\right) - \frac{1}{2}\operatorname{log}\left(1 + \frac{P}{\gamma^2}\right)\right\} = \infty$$

• Verifies the infinite capacity result of [Nascimento et al. '08] over AWGN channels.

Thank you !