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Abstract

We study information-theoretically secure commitment over a class of unreliable noisy channels

i.e., a Gaussian Unfair Noisy Channel (UNC). We provide an impossibility result for the positive

rate commitment under the unconstrained input power i.e., P → ∞. In addition, we provide a
commitment scheme based on a spherical error correcting code, hash function and randomness

extractor, that achieves a positive (finite) rate for any finite power constraint P > 0. Moreover,

together with an information-theoretic converse, we completely characterize the commitment

capacity over Gaussian UNC when P →∞.

Introduction

Two mutually distrustful parties: the committer Alice and the bidder Bob seek to devise a two-

phase protocol to achieve the following secure lock functionality: In the first phase, Alice commits

to sharing a bit string, say C, with Bob, and shares its encrypted version seeking the following

concealment guarantee: Bob cannot learn C until the time Alice chooses to reveal C to him. In

the second phase when Alice does reveal a string to Bob, the protocol’s binding guarantee enables

Bob to successfully detect whether (or not) Alice has cheated by revealing a different string. The

above functionality essentially defines a classic cryptographic primitive called commitment which is

widely utilized as a crucial building block in several practical applications like sealed-bid auctions,

coin flipping, zero knowledge proofs, secure multiparty computations, etc.

Commitment is impossible to realize through completely noiseless interactions when both Alice and

Bob are computationally unbounded. To realize commitment without such computational limitations

on the parties, one requires access to additional resources like correlated randomness, trusted third

party resources, noisy channels, etc. Wyner’s seminal work on wire-tap channels [8] first explored the

potential of noisy channels for security; he showed that a noisy random channel can be a great asset

to realize various information-theoretically secure cryptographic protocols. Wyner’s results have

subsequently spawned a wide area of research on information-theoretic security; his results have been

extended and strengthened in a multitude of works. Crépeau and Kilian [2] first demonstrated the

possibility of information-theoretically secure commitment over binary symmetric channels. Winter

et al. [7] completely characterized the commitment capacity over any discrete memoryless channels

(DMCs) (cf. [9]). Closer to this work, Nascimento et al. studied commitment over continuous

alphabet additive white Gaussian noise (AWGN) channels [5]. They showed a very surprising result

that the commitment capacity over any non-trivial AWGN channel is infinite. Subsequently, [6]

showed a constructive commitment scheme (using lattice codes) over AWGN channels.



It is pertinent to note that despite a noisy channel being an excellent resource for realizing commitment,

one needs to be mindful of potential unreliability in a channel– oftentimes due to imprecise channel

characterization (passive unreliability) or due to channel tampering by malicious parties (active

unreliability). Channel unreliabilites impact the commitment throughput potential of a noisy channel;

in some cases, they may completely preclude commitment. Damg̊ard et al. [4] first studied channel

unreliability via the unfair noisy channels (UNC) over the binary alphabet. Their Binary UNC combines

both forms of unreliability, viz., active unreliability (when either of two parties are malicious) and

passive unreliability (when both parties are honest). In a classic result, Damg̊ard et al. [4] precisely

characterized the threshold for positive-rate commitment over Binary UNCs; their commitment

capacity was recently characterized in [3], albeit under some assumptions. In this work, we study

commitment over a unreliable AWGN Channel i.e., Gaussian UNC (cf. Definition 1).

Our Contributions

• We provide an impossibility result on the zero-rate commitment over a Gaussian UNC
(irrespective of the input power at the committer) (Theorem 1) (see also [1]).

• We provide a commitment scheme based on a spherical error correcting code. It achieves a
positive commitment rate in the possibility regime (Theorem 2) (see also [1]).

• Together with an information-theoretic upper bound on the commitment rate, we completely
characterize the (finite) commitment capacity over a Gaussian UNC when the input power is

infinite. (Theorem 3 & Corollary 4).

Problem Setup

Definition 1 (Gaussian UNC). [1] A Gaussian unfair noisy channel with parameters 0 < γ2 ≤ δ2,
also called Gaussian-UNC[γ2,δ2], is an AWGN channel where (i) honest parties communicate over

an AWGN channel where the noise variance can take values in the set T = [γ2, δ2] and is unknown
to them, (ii) any dishonest party can privately set the noise variance to any value in T .1

In our problem (ref Fig. 1), two mutually distrustful parties, committer Alice and receiver Bob employ

a Gaussian-UNC[γ2,δ2] to realize commitment over a uniformly random string C ∈ [2nR] available
to Alice (we specify R > 0 later). Alice and Bob have access to a one-way Gaussian-UNC[γ2,δ2].

Separately, as is common in such cryptographic primitives, we also assume that Alice and Bob

can interact over a two-way link that is noiseless and authenticated. To commit to her random

string C, Alice uses the Gaussian-UNC[γ2,δ2] channel n times and transmits over it her encrypted

data X = (X1, X2, · · · , Xn) ∈ Rn; Bob receives a noisy version Y ∈ Rn of Alice’s transmission X.
Alice has an input power constraint P > 0, i.e., Alice can only transmit vectors X ∈ S(P ), where
S(P ) := {x ∈ Rn : ∥x∥2 ≤

√
nP}. We allow private randomization at both Alice and Bob via

their respective keys KA ∈ KA and KB ∈ KB. At any point in time, say time i , Alice and Bob can
also exchange messages over the public, noiseless link prior to transmitting Xi ; let M denote the

entire collection of messages exchanged (transcript) over the noiseless link. The rate (R) of the

1When γ2 = δ2, the Gaussian-UNC[γ2, δ2] specializes to a zero-mean AWGN channel whose commitment

capacity is known to be infinite [5].



commitment protocol is defined as the ratio of the length of the commit string C to the number of

uses of the Gaussian UNC.

Figure 1: The problem setup: commitment over a Gaussian-UNC[γ2, δ2]

Definition 2 (Commitment protocol). An (n,R)−commitment protocol P is a message-exchange

procedure between the two parties to realize commitment over the random bit string C ∈ [2nR]. We
call R the rate of such a commitment protocol P. There are two phases to a protocol P :

(a) Commit phase: Given C ∈ [2nR], Alice transmits X ∈ S(P ) using the Gaussian-UNC[γ2,δ2]channel
n times. Bob receives Y. The two parties also exchange messages over the noiseless link. Let M

denote this transcript of protocolP. Let VA and VB denote Alice’s view and Bob’s view respectively;
these ‘views’ comprise all the random variables/vectors known to the two parties at the end of the

commit phase.

(b) Reveal phase: In this phase, Alice and Bob only communicate over the noiseless public link and

do not use the Gaussian-UNC[γ2,δ2] Alice announces the commit string c̃ ∈ [2nR] and X̃ ∈ Rn.
Bob then performs a test T (c̃ , X̃, VB) and either accepts (by setting T = 1) the commit string c̃ or

reject it (by setting T = 0).

The following parameters are of key interest:

Definition 3 (ϵ-sound). A protocol P is ϵ−sound if, for honest Alice and honest Bob, we have
P (T (C,X, VB) ̸= 1) ≤ ϵ.

Definition 4 (ϵ-concealing). A protocol P is ϵ−concealing if, for honest Alice and under any
strategy of Bob, I(C; VB) ≤ ϵ.



Definition 5 (ϵ-binding). A protocol P is ϵ−binding if, for honest Bob and under any strategy of
Alice,

P
(
T (c̄ , x̄, VB) = 1 & T (ĉ , x̂, VB) = 1

)
≤ ϵ

for any two pairs (c̄ , x̄), (ĉ , x̂), c̄ ̸= ĉ , and x̄, x̂ ∈ S(P ).

A rate R is said to be achievable if for every ϵ > 0 there exists for every n ∈ N sufficiently large, a
protocol P such that P is ϵ−sound, ϵ−concealing and ϵ−binding. The supremum of all achievable
rates is called the commitment capacity C of the Gaussian-UNC[γ2,δ2].

Our Results

Theorem 1. For a Gaussian-UNC[γ2,δ2] with unconstrained input (P →∞), the commitment is
possible iff δ2 < 2γ2.

Theorem 2. For a Gaussian-UNC[γ2,δ2] with P > 0, positive-rate commitment is possible if the

following holds:

δ2 <

(
1 +

P

P + γ2

)
γ2. (0.1)

The commitment capacity satisfies C ≥ CL, where

CL :=
1

2
log2

(
P

δ2 − γ2

)
−
1

2
log2

(
1 +

P

γ2

)
(0.2)

The proof follows from the construction of a commitment scheme which achieves the rate CL. It
involves the use of a spherical code where to commit to a bit string C, the committer Alice picks

a codeword from an Error-Correcting Code (ECC). Our ECC is a spherical code comprising of

equi-normed codewords on the surface of a n-dimensional euclidean ball. The minimum distance

of the ECC is proportional to the input power P . The scheme also involves two rounds of hash

challenge from Bob to Alice to bind Alice to her choice of the commit string. Additionally, a

randomness extractor is used which allows Alice to extract a secret key from the transmitted

codeword conditioned on the view of Bob; it is used to realize one-time pad with commit string

which ensures concealment against Bob in commit phase.

Theorem 3. For a Gaussian-UNC[γ2,δ2] with P > 0, we have the following upper bound on the

commitment capacity

C ≤
1

2
log2

(
1 +

P

δ2 − γ2

)
−
1

2
log2

(
1 +

P

γ2

)
(0.3)



As a consequence of Theorem 2 (Achievability) and Theorem 3 (Converse), we have following

corollary,

Corollary 4. For a Gaussian-UNC[γ2,δ2] with unconstrained input (P → ∞), if δ2 < 2γ2, the
commitment capacity

C =
1

2
log2

(
γ2

δ2 − γ2

)
(0.4)
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