Commitment Capacity of Reverse Elastic Channels

Pranav Joshi
IIT Kharagpur

Manideep Mamindlapally IIT Kharagpur

Pranav Joshi
IIT Kharagpur

Anuj Kumar Yadav IIT Patna

Manoj Mishra NISER, HBNI

Amitalok J. Budkuley IIT Kharagpur

The Problem

Alice's turn, but its bed time

Alice can think about her next move for the whole night

A Solution - Trusted Third Party

Alice "commits" move to Mom.
Guarantee: the move is concealed from Bob

The next morning:

The move is "revealed" to Bob.
Guarantee: Alice is bound to her initial choice

What if there is no Trusted Third Party?

A Solution - Noisy Channels

If used cleverly:
It jumbles the message just enough to conceal from Bob, and little enough for Bob to catch Alice if she cheats.

The Protocol occurs in two phases, the Commit and Reveal phases.

The Commit Phase

Sealed Bid Auction

Alice's secret auction bid.

Public Authenticated Noiseless Link

Alice

Bob

Alice "commits" her message to Bob without him knowing what it is.

The Reveal Phase

Sealed Bid Auction

Alice "reveals" her choice to Bob and he decides whether or not she is being truthful

Commitment

Commit Phase

Reveal Phase

A good commitment protocol aims to be

- sound for two honest participants.
- concealing from dishonest Bob, when Alice honestly follows the protocol.
- binding: on a dishonest Alice, when Bob honestly follows the protocol

Soundness

In the Reveal Phase:

Sound Protocol: A truthful reveal will never be rejected by Bob.

Concealment

At the end of the Commit Phase:

Concealing Protocol: Bob can never learn Alice's bid until she reveals.

Bindingness

In the Reveal Phase:

Binding Protocol: Alice cannot change her bid without Bob realising.

.
㕸
C
$\xrightarrow{\longrightarrow}$

Unreliable Noisy Channels

Regular BSC:

BSCs can be used for commitment, but not all channels are as reliable.
Real world channels may be influenced by malicious adversaries

Potential for Malicious Action:

A better antenna lets Bob receive on a cleaner channel, unknown to Alice

Elastic Noisy Channel

[Khurana et al, '16]

Reverse Elastic Channel

[Khurana et al, '16]

Unfair Noisy Channel

[Damgard et al, ‘98]

Commitment Capacity

Maximise the length of c given n uses of the channel.
Commitment Capacity: measure of commitment throughput, i.e. how long we can make c

Our Goal

Known capacities of Channels:

- $C_{B S C}=\mathrm{H}(\delta)$
- $C_{E N C}=\mathrm{H}(\gamma)$
- $C_{U N C}=\mathrm{H}(\gamma)-\mathrm{H}\left(\frac{\delta-\gamma}{1-2 \gamma}\right)$

We wish to find the commitment capacity of REC.

Achievability

The Protocol
$c \in\{0,1\}^{n R}$
Message to commit

Noiseless Link

Commitment Capacity of Reverse Elastic Channels

Achievability

Proof of Soundness

Bob prepares a list

$$
\mathcal{L}(\mathbf{y})=\left\{\mathbf{x} \in\{0,1\}^{n}: d_{H}(\mathbf{x}, \mathbf{y}) \approx n \delta\right\}
$$

Protocol is sound if $\mathbf{X} \in \mathcal{L}(\mathbf{y})$ with high probability
Using the Chernoff Bound, and the fact that \mathbf{X} and \mathbf{Y} are connected via a $\operatorname{BSC}(\delta)$, we can show:

$$
P(\mathbf{X} \notin \mathcal{L}(\mathbf{y})) \xrightarrow{n \rightarrow \infty} 0
$$

Achievability

Proof of Bindingness

Initial confusing set for Alice

Bob knows $G_{1}\left(X^{n}\right)$ and $G_{2}\left(X^{n}\right)$, so Alice cannot "spoof" with any X^{n} she wants
G_{1} and G_{2} limit the number of strings Alice can cheat with:

- Initially exponential in n.
- G_{1} : Constrains to polynomial in n.
- G_{2} : Constrains to one string.

The one remaining X^{n} Alice can use

Achievability

Proof of Concealment

Converse

- Achievability: Prove rate $R \leq h(\delta)-h(\theta)$ is possible
- Converse: Prove rate $R>h(\delta)-h(\theta)$ is impossible

Pick a specific cheating strategy for Alice, and see which rates we cannot achieve

Maybe put an achievability-impossibility curve here?

Converse

BSCs in Series

Converse

Alice's Cheating Strategy

Alice sets the channel to be a $\operatorname{BSC}(s), s \in[\gamma, \delta]$
This allows her some room to cheat

Converse

Alice's Cheating Strategy

Alice sets the channel to be a $\operatorname{BSC}(s), s \in[\gamma, \delta]$
This allows her some room to cheat

Converse

Alice's Cheating Strategy

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$ $n R=H(C)$

Because $C \in\{0,1\}^{n R}$
Now, we analyse this expression assuming Alice executes the cheating strategy described previously

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
& n R= H(C) \\
& \begin{array}{|l}
\hline
\end{array} \quad H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
&= H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
&= H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
&= I\left(C ; \mathbf{Y} \mathbf{Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
&= I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R= & H(C) \\
= & H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
= & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
\quad & \quad+H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
\leq & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
= & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
= & I\left(C ; \mathbf{Y} \mathbf{Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
= & I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
& n R=H(C) \\
& =H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \quad \text { Adding and subtracting } \\
& \begin{array}{l}
\leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
=H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)
\end{array} \\
& +H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& +H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =I\left(C ; \mathbf{Y Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R & =H(C) \\
& =H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
& =H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =I\left(C ; \mathbf{Y} \mathbf{Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
& n R=H(C) \\
& =H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
& =H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& +H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
& \leq H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& +H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =I\left(C ; \mathbf{Y} \mathbf{Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
& \text { Adding and subtracting } \\
& H\left(C \mid M, K_{B}\right)
\end{aligned}
$$

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R= & H(C) \\
& =H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \\
\leq & H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
= & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
\quad & \quad+H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
\leq & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
= & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
& =I\left(C ; \mathbf{Y} \mathbf{Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
= & I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Grouping $3^{r d}$ with $4^{\text {th }}$ term and $1^{\text {st }}$ with $2^{\text {nd }}$ term

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R= & H(C) \\
= & H\left(C \mid V_{B}\right)+I\left(C ; V_{B}\right) \\
\leq & H\left(C \mid \mathbf{Y}, M, K_{B}\right)+\epsilon_{n} \\
= & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
& \quad+H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon_{n} \\
\leq & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
= & H\left(C \mid \mathbf{Y}, M, K_{B}\right)-H\left(C \mid M, K_{B}\right)-H\left(C \mid \mathbf{Y}, \mathbf{Z}, M, K_{B}\right) \\
\quad & \quad+H\left(C \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon_{n} \\
= & I\left(C ; \mathbf{Y} \mathbf{Z} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Denoting the pair of random variables (\mathbf{Y}, \mathbf{Z}) as $\tilde{\mathbf{Z}}$

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R & =H(C) \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon
\end{aligned}
$$

Converse

A rate R scheme: ϵ_{n} - sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R & =H(C) \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
\Longrightarrow R & \leq I(\mathbf{X} ; \tilde{\mathbf{Z}})-I(\mathbf{X} ; \mathbf{Y})+\frac{\epsilon^{\prime \prime}}{n}+\frac{\epsilon}{n}
\end{aligned}
$$

Using the result from Czisar and Korner:

Converse

A rate R scheme: $\epsilon_{n}-$ sound, $\epsilon_{n}-$ concealing and $\epsilon_{n}-$ binding $\quad\left(\epsilon_{n} \xrightarrow{n \rightarrow \infty} 0\right)$

$$
\begin{aligned}
n R & =H(C) \\
& =I\left(C ; \tilde{\mathbf{Z}} \mid M, K_{B}\right)-I\left(C ; \mathbf{Y} \mid M, K_{B}\right)+\epsilon^{\prime \prime}+\epsilon \\
\Longrightarrow R & \leq I(\mathbf{X} ; \tilde{\mathbf{Z}})-I(\mathbf{X} ; \mathbf{Y})+\frac{\epsilon^{\prime \prime}}{n}+\frac{\epsilon}{n}
\end{aligned}
$$

$$
\Longrightarrow R \leq \min _{s \in[\gamma, \delta]}[I(\mathbf{X} ; \tilde{\mathbf{Z}})-I(\mathbf{X} ; \mathbf{Y})]
$$

Let n grow sufficiently large.
Because the inequality holds for all cheating

$$
\leq \max _{P_{X}} \min _{s \in[\gamma, \delta]}[I(\mathbf{X} ; \tilde{\mathbf{Z}})-I(\mathbf{X} ; \mathbf{Y})]
$$ behaviours of Alice, it must also hold for the minimum

$$
\leq H(\delta)-H(\theta)
$$

Result

$$
C_{R E C}=H(\delta)-H(\theta)
$$

Capacities of Channels

Insights

Malicious Alice affects commitment capacity more than malicious Bob

The commitment problem is such that a malicious Bob can't really do much besides set the channel parameter because Bob is not the one committing anything.

END

